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Background

Chronic liver disease, particularly cirrhosis, poses a significant health burden

in Singapore, resulting in substantial mortality rates. Timely identification

of decompensation and acute-on-chronic liver failure (ACLF) in cirrhosis patients
is crucial to reduce mortality and improve outcomes. In this study, we address
the pressing need for predictive tools by leveraging electronic health records
(EHR) and advanced machine learning techniques to develop an automated
clinical decision support system SolLiDaRity-DAM. This system aims to predict
decompensation events, facilitate timely referral for liver transplantation, and
enhance patient care in cirrhosis management.

SoLiDaRity-DAM encompasses a comprehensive approach to converting
longitudinal structured patient data from EHR sources into predictive algorithms
and machine learning models. The development process places a strong emphasis
on merging clinical expertise with statistical methods.

The outcome variables of this study were :

« decompensation

* time to decompensation

Any information collected in the SolLiDaRity Registry was considered a predictor of
these outcomes, including demographic factors, biomarker levels during cirrhosis
diagnosis, and the presence of comorbidities.

Results
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Random Forest, for training and validation datasets.

RF- Random Forest, KNN- K-nearest neighbours

Conclusion

SoLiDaRity-DAM demonstrates the feasibility of utilising Al and machine learning techniques to predict decompensation events in cirrhosis patients with high accuracy. By
integrating clinical expertise and EHR data, this Al-powered clinical decision support system holds promise in improving patient outcomes by enabling timely interventions,
including the referral for liver transplantation. The development of SoLiDaRity-DAM represents a crucial step towards personalised, data-driven cirrhosis management, with
the potential to significantly reduce mortality and healthcare costs in Singapore's population.
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